558 research outputs found

    Electronic Multiscale Hybrid Materials: Sinter-Free Inks, Printed Transparent Grids, and Soft Devices

    Get PDF
    Hybrid electronic materials combine the excellent electronic properties of metals and semiconductors with the mechanical flexibility, ease of processing, and optical transparency of polymers. This talk will discuss hybrids that combine organic and inorganic components at different scales. Metallic and semiconductor nanoparticle cores are coated with conductive polymer shells to create “hybrid inks” that can be inkjet-printed and form conductive leads without any sintering step. Transparent electrodes are printed using ultrathin metal nanowires with core diameters below 2 nm. The chemically synthesized wires spontaneously form percolating structures when patterned with a soft stamp; this rapidly yields optically transparent grid electrodes, even on demanding soft substrates. These new hybrid electronic materials enable the fabrication of soft electronics, including flexible sensors on polymer foils, radio-frequency identification (RFID) antennae on cardboard, and soft human–machine interfaces. Selected devices will be covered at the end of the talk

    A time-dependent variational principle for dissipative dynamics

    Get PDF
    We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contrast to the pure-state setting there is no canonical information geometry for mixed states and this leads to a family of possible trajectories --- one for each information metric. We focus on the case of the operationally motivated family of monotone riemannian metrics and show further, that in the particular case where the variational manifold is given by the set of fermionic gaussian states all of these possible trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.Comment: Published versio

    Dynamic Light Scattering on Nanoparticles in Microgravity in a Drop Tower

    Get PDF
    Gravity affects colloidal dispersions via sedimentation and convection. We used dynamic light scattering (DLS) to quantify the mobility of nanoparticles on ground and in microgravity. A DLS instrument was adapted to withstand the accelerations in a drop tower, and a liquid handling set-up was connected in order to stabilize the liquid temperature and enable rapid cooling or heating. Light scattering experiments were performed in the drop tower at ZARM (Bremen, Germany) during a microgravity interval of 9.1 s and compared to measurements on ground. Particle dynamics were analyzed at constant temperature and after a rapid temperature drop using a series of DLS measurements with 1 s integration time. We observed nanoparticles with average gold core diameters of 7.8 nm and non-polar oleylamine shells that were dispersed in tetradecane and had an average hydrodynamic diameter of 21 nm. The particles did not change their diameter in the observed temperature range. The particle dynamics inferred from DLS on ground and in microgravity were in good agreement, demonstrating the possibility to perform reliable DLS measurements in a drop tower

    Identification of excitons, trions and biexcitons in single-layer WS2

    Get PDF
    Single-layer WS2_2 is a direct-gap semiconductor showing strong excitonic photoluminescence features in the visible spectral range. Here, we present temperature-dependent photoluminescence measurements on mechanically exfoliated single-layer WS2_2, revealing the existence of neutral and charged excitons at low temperatures as well as at room temperature. By applying a gate voltage, we can electrically control the ratio of excitons and trions and assert a residual n-type doping of our samples. At high excitation densities and low temperatures, an additional peak at energies below the trion dominates the photoluminescence, which we identify as biexciton emission.Comment: 6 pages, 5 figure

    Ageing of alkylthiol-stabilized gold nanoparticles

    Get PDF
    The ageing of spherical gold nanoparticles having 6-nm-diameter cores and a ligand shell of dodecanethiol is investigated under different storage conditions. Losses caused by agglomeration and changes in optical particle properties are quantified. Changes in colloidal stability are probed by analytical centrifugation in a polar solvent mixture. Chemical changes are detected by elementary analysis of particles and solvent. Fractionation occurs under all storage conditions. Ageing is not uniform but broadens the property distributions of the particles. Small-number statistics in the ligand shell density and the morphological heterogeneity of particles are possible explanations. Washing steps exacerbate ageing, a process that could not be fully reversed by excess ligands. Dry storage is not preferable to storage in solvent. Storage under inert argon atmosphere reduces losses more than all other conditions but could not prevent it entirely

    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration

    Get PDF
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (” g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity

    Modelling Vibrational Dissociation of [H2–HCO]+

    Get PDF
    The [H2–HCO]+ complex is likely to be one of the most important complexes in interstellar space, as it is a complex of the most abundant interstellar species. In the current work, we investigate the interaction energy and potential surface of the complex using a range of computational methods. The dynamics of the complex are investigated by incorporating an external time-dependent field into Car-Parrinello molecular dynamics (CPMD) and inducing a vibrationally activated dissociation. This excitation method is compared to a normal-mode excitation from the equilibrium structure. The results agree well with the available experimental data: an excitation to the first vibrationally-excited state of either of the high-frequency HCO+ modes (Îœ2, Îœ3) causes a dissociation of the complex on picosecond timescales

    Precipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolution

    Get PDF
    Particle number densities are a crucial parameter in the microstructure engineering of microalloyed steels. We introduce a new method to determine nanoscale precipitate number densities of macroscopic samples that is based on the matrix dissolution technique (MDT) and combine it with atom probe tomography (APT). APT counts precipitates in microscopic samples of niobium and niobium-titanium microalloyed steels. The new method uses MDT combined with analytical ultracentrifugation (AUC) of extracted precipitates, inductively coupled plasma–optical emission spectrometry, and APT. We compare the precipitate number density ranges from APT of 137.81 to 193.56 × 1021 m−3 for the niobium steel and 104.90 to 129.62 × 1021 m−3 for the niobium-titanium steel to the values from MDT of 2.08 × 1021 m−3 and 2.48 × 1021 m−3. We find that systematic errors due to undesired particle loss during extraction and statistical uncertainties due to the small APT volumes explain the differences. The size ranges of precipitates that can be detected via APT and AUC are investigated by comparison of the obtained precipitate size distributions with transmission electron microscopy analyses of carbon extraction replicas. The methods provide overlapping resulting ranges. MDT probes very large numbers of small particles but is limited by errors due to particle etching, while APT can detect particles with diameters below 10 nm but is limited by small-number statistics. The combination of APT and MDT provides comprehensive data which allows for an improved understanding of the interrelation between thermo-mechanical controlled processing parameters, precipitate number densities, and resulting mechanical-technological material properties. Graphical abstract: [Figure not available: see fulltext.
    • 

    corecore